Background	Hypothesis	Method	Results	Conclusion
000000		00000	000000	000

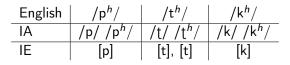
The Curious Absence of Aspiration in Indian English: The Role of Phonetics in Adaptation

Jahnavi Narkar

Wayne State University

(F)ASAL, March 21, 20202

Background ●00000	Hypothesis O	Method 00000	Results 000000	Conclusion
Introduction				


- Phonological behavior is known to take precedence over phonetic cues in cases of loanword adaptation
- For example illusory vowels
- [ebzo] → [ebuzo]
- The opposite case rarely observed since phonetic cues typically align with phonological behavior

Adaptation in Indo-Aryan Loans and Indian English

• In Indo-Aryan (IA) loanwords and Indian English (IE), English aspirated stops adapted as unaspirated, even though aspirated stops in IA languages are contrastive

 $\bullet \ \, \text{For example, } [p^hiz] \rightarrow [piz]$

Background	Hypothesis	Method	Results	Conclusion
00●000	O	00000	000000	
Aspiration in	English and	IA		

- English has an aspiration, rather than voicing contrast, and the aspirated series is unmarked
- IA languages have a more complex contrast with both features, [spread glottis] and [voice] active

	Voiceless	Voiced
Unaspirated		[gədi] ("worker")
Aspirated	[k ^h ədi] ("gravel")	[g ^h ədi] ("fold")

Background	Hypothesis	Method	Results	Conclusion
000●00	O	00000	000000	
Aspiration i	n English and	IA		

- Even if we do not assume that aspirated stops in English are unmarked, the aspirated phoneme occurs in the most prominent contexts in English
- IA languages and IE consistently adapt these stops as unaspirated

- VOT (lead-lag) < VOT (short-lag) < VOT (long-lag)
- Onset f0 secondary cue
- Aspiration raises onset f0

Background 00000●	Hypothesis O	Method 00000	Results 000000	Conclusion

Cues to four-way laryngeal contrast in IA

- Overlap in VOT values
- Onset f0 primary cue
- Aspiration lowers onset f0
- Onset f0 order: breathy > lead-lag > long-lag > short-lag

Background	Hypothesis	Method	Results	Conclusion
000000	●	00000	000000	
Hypothesis				

- Perceptual adaptation is based on phonetic, rather than phonological cues only
- English and IA languages like Hindi and Marathi show phonetic differences
 - IA VOT (long-lag stops) > English
 - Aspiration lowers onset f0 in IA but raises it in English
- These phonetic differences could explain the IA and IE adaptation pattern

Background	Hypothesis	Method	Results	Conclusion
000000	O	•0000	000000	000
Participants				

- Speech samples from The Speech Accent Archive of 102 native speakers of one of 10 IA languages and IE
- Control group: 6 speakers of British English (BE)

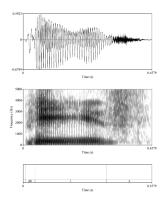
Language	Number of speakers
Bengali	14
Gujarati	11
Hindi	28
Konkani	3
Marathi	8
Nepali	14
Oriya	2
Pahari	2
Sinhala	7
Urdu	13
Total	102

Background 000000	Hypothesis O	Method o●ooo	Results 000000	Conclusion
Materials				

Speech samples of speakers reading a passage in English from The Speech Accent Archive (Weinberger and Kunath, 2011) reading the same passage in English:

"Please call Stella. Ask her to bring these things with her from the store: Six **spoons** of fresh snow **peas**, five thick slabs of blue cheese, and maybe a snack for her brother Bob. We also need a small plastic snake and a big toy frog for the <u>kids</u>. She can <u>scoop</u> these things into three red bags, and we will go meet her Wednesday at the train station."

Background 000000	Hypothesis O	Method oo●oo	Results 000000	Conclusion
Measurements	5			

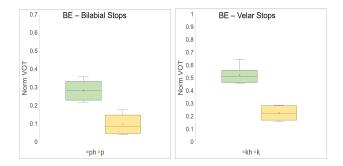

VOT and onset f0 of target words

- [p^hiz]
- [spunz]
- [k^hıdz]
- [skup]

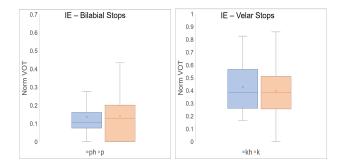
	peas	spoons	kids	scoop
BE speakers	6	6	6	6
IE speakers	99	101	99	96

Background	Hypothesis	Method	Results	Conclusion
000000	O	000●0	000000	
VOT Measi	irement			

- Interval between the beginning of the release burst and the onset of quasi-periodicity
- Normalized with respect to vowel length to account speech rate



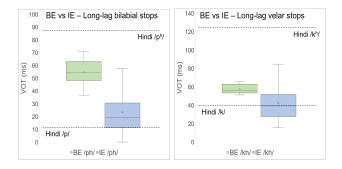
- Measured at the first point immediately at the onset of voicing at which periodicity could be detected
- Clear outliers that typically result from pitch-halving and pitch-doubling errors of Praat's autocorrelation algorithm corrected manually by measuring the duration of a single glottal pulse as the duration of one cycle of the periodic waveform and taking its inverse
- Normalized via conversion to semitones using the semitone conversion equation provided in the Praat internal users' manual


Background	Hypothesis	Method	Results	Conclusion
000000	○	00000	●00000	000
Results - B	E VOT			

- BE short-lag and long-lag stops have significantly different VOT
- Laryngeal categories are differentiated in terms of VOT based on context

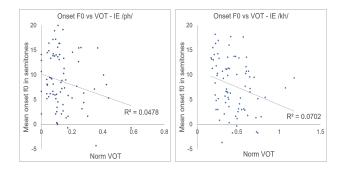
Background	Hypothesis	Method	Results	Conclusion
000000	O	00000	o●oooo	
Results - IE	EVOT			

- IE short-lag and (underlyingly, in English) log-lag stops do not have significantly different VOT
- Laryngeal categories are **not** differentiated in terms of VOT based on context

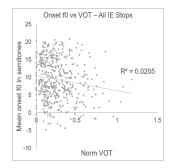

Background 000000	Hypothesis 0	Method 00000	Results 00●000	Conclusion
Hindi VOT				

VOT (in ms) of Hindi stops reported by previous studies-

	[p ^h]	[p]	[k ^h]	[k]
Lisker and Abramson, 1964 ($N = 1$)	63	12	84	16
Benguerel and Bhatia, 1980 (N $=$ 2)	119	15	142	52
Shimizu, 1989 (N = 3)	75	12	119	34
Weighted Average	88	13	121	37



VOT (IE "long-lag" stops) \approx VOT (Hindi short-lag stops) < VOT (BE long-lag stops) < VOT (Hindi long-lag stops)


Background	Hypothesis	Method	Results	Conclusion
000000	○	00000	0000●0	
Results - Ons	et F0			

- Significant negative correlation between aspiration and onset f0
- Longer aspirated release correlates with lower onset f0
- $\bullet~$ IE aspiration-f0 $\sim~$ IA aspiration-f0

- Significant negative correlation between aspiration and onset f0
- Longer aspirated release correlates with lower onset f0
- $\bullet~$ IE aspiration-f0 $\sim~$ IA aspiration-f0

Background	Hypothesis	Method	Results	Conclusion
000000	O	00000	000000	●○○
Conclusion				

- IA short-lag stops = short VOT + slight lowering of onset f0
- IA long-lag stops = long VOT + considerable lowering of onset f0
- English long-lag stops = long-ish VOT + raising of onset f0
- IA short-lag stops acoustically less dissimilar to English long-lag stops
- Due to these acoustic differences, English long-lag stops perceived as being categorically unaspirated by IA native speakers

Background	Hypothesis	Method	Results	Conclusion
000000	O	00000	000000	○●○
Conclusion				

- Adaptation patterns may be rooted in perception
- IA speakers must ignore the fact that the stops are phonologically aspirated, only engaging in low-level perceptual adaptation
- Grammatical processing does not necessarily do the same, but it is likely that some parts of loan adaptation do not involve grammar at all
- Phonetics can play a role in loanword adaptation and cases where phonetics and phonology match may also have an entirely phonetic explanation

Background	Hypothesis	Method	Results	Conclusion
000000	0	00000	000000	○○●

Thank you!

(Please email me for references at jahnavi.narkar@wayne.edu)